Removal of arsenite by coupled electrocatalytic oxidation at polymer–ruthenium oxide nanocomposite and polymer-assisted liquid phase retention
[Display omitted] ► A polymer–ruthenium oxide nanocomposite was electrosynthesized and fully characterized. ► Carbon electrodes were modified with films of this nanocomposite. ► The modified electrodes exhibited high catalytic activity toward As(III) oxidation. ► As(III) oxidation combined with ultr...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2013-01, Vol.129, p.130-136 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
► A polymer–ruthenium oxide nanocomposite was electrosynthesized and fully characterized. ► Carbon electrodes were modified with films of this nanocomposite. ► The modified electrodes exhibited high catalytic activity toward As(III) oxidation. ► As(III) oxidation combined with ultrafiltration allowed efficient arsenic removal.
Nanocomposite materials synthesized by incorporation of ruthenium oxide nanoparticles into a poly(pyrrole-alkylammonium) matrix have been characterized by transmission electron microscopy and by electrochemistry. Ruthenium oxide-based nanocomposites films coated onto carbon appeared efficient electrocatalysts for the oxidation of arsenic(III) into arsenic(V) species at a remarkable low potential, i.e. in the 0.3–0.5V vs. Ag/AgCl range. Bulk electrocatalytic oxidation of arsenite solutions could be performed in the presence of a water-soluble poly(quaternary ammonium) salts acting as the supporting electrolyte and also as an As(V) complexing agent, which allowed to combine electrocatalytic oxidation of As(III) with the liquid phase polymer-assisted retention (LPR) technique to efficiently remove arsenic from polluted solutions. |
---|---|
ISSN: | 0926-3373 1873-3883 |
DOI: | 10.1016/j.apcatb.2012.09.025 |