SU(p,q) coherent states and a Gaussian de Finetti theorem

We prove a generalization of the quantum de Finetti theorem when the local space is an infinite-dimensional Fock space. In particular, instead of considering the action of the permutation group on n copies of that space, we consider the action of the unitary group U(n) on the creation operators of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2018-04, Vol.59 (4)
1. Verfasser: Leverrier, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a generalization of the quantum de Finetti theorem when the local space is an infinite-dimensional Fock space. In particular, instead of considering the action of the permutation group on n copies of that space, we consider the action of the unitary group U(n) on the creation operators of the n modes and define a natural generalization of the symmetric subspace as the space of states invariant under unitaries in U(n). Our first result is a complete characterization of this subspace, which turns out to be spanned by a family of generalized coherent states related to the special unitary group SU(p, q) of signature (p, q). More precisely, this construction yields a unitary representation of the noncompact simple real Lie group SU(p, q). We therefore find a dual unitary representation of the pair of groups U(n) and SU(p, q) on an n(p + q)-mode Fock space. The (Gaussian) SU(p, q) coherent states resolve the identity on the symmetric subspace, which implies a Gaussian de Finetti theorem stating that tracing over a few modes of a unitary-invariant state yields a state close to a mixture of Gaussian states. As an application of this de Finetti theorem, we show that the n × n upper-left submatrix of an n × n Haar-invariant unitary matrix is close in total variation distance to a matrix of independent normal variables if n3 = O(m).
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5007334