The aza-Michael reaction as an alternative strategy to generate advanced silicon-based (macro)molecules and materials
Aza-Michael reaction is a simple and accessible addition reaction performed at moderate temperature, possibly without a catalyst and without releasing by-products. Its versatility allows designing specific structures thanks to the availability of a multitude of Michael acceptors and Michael donors....
Gespeichert in:
Veröffentlicht in: | Progress in polymer science 2017-09, Vol.72, p.61-110 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aza-Michael reaction is a simple and accessible addition reaction performed at moderate temperature, possibly without a catalyst and without releasing by-products. Its versatility allows designing specific structures thanks to the availability of a multitude of Michael acceptors and Michael donors. The reaction rate of the aza-Michael reaction can be improved by adding different co-reactants (polar protic solvents, catalysts) and/or adjusting the external energy sources (e.g. moderate to high temperatures or high pressures). Here, we show that this addition reaction is efficient for modifying or curing silicon-containing molecules, oligomers and polymers. The pros and cons of applying the aza-Michael reaction to silicon-containing molecules (including alkoxysilanes and PDMS) are highlighted. A large variety of intermediates such as coupling agents, reactive diluents, and sol-gel precursors prepared by the aza-Michael reaction are presented. Finally, applications of these, including products ranging from functional silicone intermediates to soft (unfilled) elastomers, are reported. |
---|---|
ISSN: | 0079-6700 1873-1619 |
DOI: | 10.1016/j.progpolymsci.2017.02.002 |