Spectroscopy and Directed Transport of Topological Solitons in Crystals of Trapped Ions

We study experimentally and theoretically discrete solitons in crystalline structures consisting of several tens of laser-cooled ions confined in a radio frequency trap. Resonantly exciting localized, spectrally gapped vibrational modes of the soliton, a nonlinear mechanism leads to a nonequilibrium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-10, Vol.119 (15), p.153602-153602, Article 153602
Hauptverfasser: Brox, J, Kiefer, P, Bujak, M, Schaetz, T, Landa, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study experimentally and theoretically discrete solitons in crystalline structures consisting of several tens of laser-cooled ions confined in a radio frequency trap. Resonantly exciting localized, spectrally gapped vibrational modes of the soliton, a nonlinear mechanism leads to a nonequilibrium steady state of the continuously cooled crystal. We find that the propagation and the escape of the soliton out of its quasi-one-dimensional channel can be described as a thermal activation mechanism. We control the effective temperature of the soliton's collective coordinate by the amplitude of the external excitation. Furthermore, the global trapping potential permits controlling the soliton dynamics and realizing directed transport depending on its topological charge.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.119.153602