Structural Characterization by Tandem Mass Spectrometry of the Posttranslational Polyglycylation of Tubulin

Polyglycylation is a posttranslational modification specific to tubulin. This modification was originally identified in highly stable microtubules from Paramecium cilia. As many as 34 posttranslationally added glycine residues have been located in the C-terminal domains of Paramecium α- and β-tubuli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1999-03, Vol.38 (10), p.3133-3139
Hauptverfasser: Vinh, Joëlle, Langridge, James I, Bré, Marie-Hélène, Levilliers, Nicolette, Redeker, Virginie, Loyaux, Denis, Rossier, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyglycylation is a posttranslational modification specific to tubulin. This modification was originally identified in highly stable microtubules from Paramecium cilia. As many as 34 posttranslationally added glycine residues have been located in the C-terminal domains of Paramecium α- and β-tubulin. In this study, post source decay matrix-assisted laser desorption/ionization mass spectrometry (PSD MALDI MS) and electrospray ionization on a hybrid quadrupole orthogonal time-of-flight tandem mass spectrometer (ESI Q-TOF MS/MS) were both used to demonstrate that a single molecule of β-tubulin, from either dynamic cytoplasmic microtubules or stable axonemal microtubules, can be glycylated on each of the last four C-terminal glutamate residues Glu437, Glu438, Glu439, and Glu441 in the sequence 427DATAEEEGEFEEEGEQ442. In both dynamic and stable microtubules the most abundant β-tubulin isoform contains six posttranslationally added glycine residues:  two glycine residues on both Glu437 and Glu438 and one glycine residue on both Glu439 and Glu441. The number and relative abundance of glycylated isoforms of β-tubulin in both cytoplasmic and axonemal microtubules were compared by MALDI MS. The abundance of the major glycylated isoforms in axonemal tubulin decreases regularly with glycylation levels from 6 to 19 whereas it drops abruptly in cytoplasmic tubulin with glycylation levels from 6 to 9. However, the polyglycine chains are similarly distributed on the four C-terminal glutamate residues of cytoplasmic and axonemal tubulin. The polyglycylation results in bulky C-terminal domains with negatively charged surfaces, all surrounding the microtubular structure.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi982304s