Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems

This paper deals with the minimization of a class of nonsmooth pseudolinear functions over a closed and convex set subject to linear inequality constraints. We establish several Lagrange multiplier characterizations of the solution set of the minimization problem by using the properties of locally L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2014-03, Vol.160 (3), p.763-777
Hauptverfasser: Mishra, S. K., Upadhyay, B. B., An, Le Thi Hoai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the minimization of a class of nonsmooth pseudolinear functions over a closed and convex set subject to linear inequality constraints. We establish several Lagrange multiplier characterizations of the solution set of the minimization problem by using the properties of locally Lipschitz pseudolinear functions. We also consider a constrained nonsmooth vector pseudolinear optimization problem and derive certain conditions, under which an efficient solution becomes a properly efficient solution. The results presented in this paper are more general than those existing in the literature.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-013-0313-9