Non-existence of extremals for the Adimurthi–Druet inequality

The Adimurthi–Druet [1] inequality is an improvement of the standard Moser–Trudinger inequality by adding a L2-type perturbation, quantified by α∈[0,λ1), where λ1 is the first Dirichlet eigenvalue of Δ on a smooth bounded domain. It is known [3,10,14,19] that this inequality admits extremal function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2019-01, Vol.266 (2-3), p.1051-1072
Hauptverfasser: Mancini, Gabriele, Thizy, Pierre-Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Adimurthi–Druet [1] inequality is an improvement of the standard Moser–Trudinger inequality by adding a L2-type perturbation, quantified by α∈[0,λ1), where λ1 is the first Dirichlet eigenvalue of Δ on a smooth bounded domain. It is known [3,10,14,19] that this inequality admits extremal functions, when the perturbation parameter α is small. By contrast, we prove here that the Adimurthi–Druet inequality does not admit any extremal, when the perturbation parameter α approaches λ1. Our result is based on sharp expansions of the Dirichlet energy for blowing sequences of solutions of the corresponding Euler–Lagrange equation, which take into account the fact that the problem becomes singular as α→λ1.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2018.07.065