Multivariate denoising using wavelets and principal component analysis

A multivariate extension of the well known wavelet denoising procedure widely examined for scalar valued signals, is proposed. It combines a straightforward multivariate generalization of a classical one and principal component analysis. This new procedure exhibits promising behavior on classical be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2006-05, Vol.50 (9), p.2381-2398
Hauptverfasser: Aminghafari, Mina, Cheze, Nathalie, Poggi, Jean-Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A multivariate extension of the well known wavelet denoising procedure widely examined for scalar valued signals, is proposed. It combines a straightforward multivariate generalization of a classical one and principal component analysis. This new procedure exhibits promising behavior on classical bench signals and the associated estimator is found to be near minimax in the one-dimensional sense, for Besov balls. The method is finally illustrated by an application to multichannel neural recordings.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2004.12.010