Conditional hyperbolic quadrature method of moments for kinetic equations
The conditional quadrature method of moments (CQMOM) was introduced by Yuan and Fox (2011) [4] to reconstruct a velocity distribution function (VDF) from a finite set of its integer moments. The reconstructed VDF takes the form of a sum of weighted Dirac delta functions in velocity phase space, and...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2018-07, Vol.365, p.269-293 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The conditional quadrature method of moments (CQMOM) was introduced by Yuan and Fox (2011) [4] to reconstruct a velocity distribution function (VDF) from a finite set of its integer moments. The reconstructed VDF takes the form of a sum of weighted Dirac delta functions in velocity phase space, and provides a closure for the spatial flux term in the corresponding kinetic equation. The CQMOM closure for the flux leads to a weakly hyperbolic system of moment equations. In subsequent work by Chalons et al. (2010) [8], the Dirac delta functions were replaced by Gaussian distributions, which make the moment system hyperbolic but at the added cost of dealing with continuous distributions. Here, a hyperbolic version of CQMOM is proposed that uses weighted Dirac delta functions. While the moment set employed for multi-Gaussian and conditional HyQMOM (CHyQMOM) are equivalent, the latter is able to access all of moment space whereas the former cannot (e.g. arbitrary values of the fourth-order velocity moment in 1-D phase space with two nodes). By making use of the properties of CHyQMOM in 2-D phase space, it is possible to control a symmetrical subset of the optimal moments from Fox (2009) [24]. Furthermore, the moment sets for 2-D problems are smaller for CHyQMOM than in the original CQMOM thanks to a judicious choice of the velocity abscissas in phase space.
•A hyperbolic quadrature method of moments (HyQMOM) for kinetic equations is proposed.•Multivariate velocity distribution functions are reconstructed using a modified CQMOM algorithm combined with HyQMOM.•CHyQMOM accurately captures particle trajectory crossing while avoiding delta shocks.•CHyQMOM is the most accurate and robust quadrature-based moment method developed to date for simulating particle-laden flows. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2018.03.025 |