Free surface due to a flow driven by a rotating disk inside a vertical cylindrical tank: Axisymmetric configuration
The flow driven by a rotating disk at the bottom of an open fixed cylindrical cavity is studied numerically and experimentally. The steady axisymmetric Navier-Stokes equations projected onto a curvilinear coordinate system are solved by a Newton-Raphson algorithm. The free surface shape is computed...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2014-07, Vol.26 (7), p.063603 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The flow driven by a rotating disk at the bottom of an open fixed cylindrical cavity is studied numerically and experimentally. The steady axisymmetric Navier-Stokes equations projected onto a curvilinear coordinate system are solved by a Newton-Raphson algorithm. The free surface shape is computed by an iterative process in order to satisfy a zero normal stress balance at the interface. In previous studies, regarding the free surface deflection, there is a significant disagreement between a first-order approximation [M. Piva and E. Meiburg, “Steady axisymmetric flow in an open cylindrical container with a partially rotating bottom wall,” Phys. Fluids 17, 063603 (2005)] and a full numerical simulation [R. Bouffanais and D. Lo Jacono, “Unsteady transitional swirling flow in the presence of a moving free surface,” Phys. Fluids 21, 064107 (2009)]. For a small deflection, the first-order approximation matches with our numerical simulation and for a large deflection a good agreement is found with experimental measurements. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.4890209 |