Configuration Spaces of the Affine Line and their Automorphism Groups
The configuration space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}^{n}(X)$$ \end{document} of an alg...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The configuration space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{C}^{n}(X)$$
\end{document} of an algebraic curve X is the algebraic variety consisting of all n-point subsets Q ⊂ X. We describe the automorphisms of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{C}^{n}(\mathbb{C})$$
\end{document}, deduce that the (infinite dimensional) group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathrm{Aut}\,\,\mathcal{C}^{n}(\mathbb{C})$$
\end{document} is solvable, and obtain an analog of the Mostow decomposition in this group. The Lie algebra and the Makar-Limanov invariant of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{C}^{n}(\mathbb{C})$$
\end{document} are also computed. We obtain similar results for the level hypersurfaces of the discriminant, including its singular zero level. |
---|---|
ISSN: | 2194-1009 2194-1017 |
DOI: | 10.1007/978-3-319-05681-4_24 |