Configuration Spaces of the Affine Line and their Automorphism Groups

The configuration space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}^{n}(X)$$ \end{document} of an alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Vladimir, Zaidenberg, Mikhail
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The configuration space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}^{n}(X)$$ \end{document} of an algebraic curve X is the algebraic variety consisting of all n-point subsets Q ⊂ X. We describe the automorphisms of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}^{n}(\mathbb{C})$$ \end{document}, deduce that the (infinite dimensional) group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathrm{Aut}\,\,\mathcal{C}^{n}(\mathbb{C})$$ \end{document} is solvable, and obtain an analog of the Mostow decomposition in this group. The Lie algebra and the Makar-Limanov invariant of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{C}^{n}(\mathbb{C})$$ \end{document} are also computed. We obtain similar results for the level hypersurfaces of the discriminant, including its singular zero level.
ISSN:2194-1009
2194-1017
DOI:10.1007/978-3-319-05681-4_24