From infinite urn schemes to self-similar stable processes

We investigate the randomized Karlin model with parameter β∈(0,1), which is based on an infinite urn scheme. It has been shown before that when the randomization is bounded, the so-called odd-occupancy process scales to a fractional Brownian motion with Hurst index β∕2∈(0,1∕2). We show here that whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic processes and their applications 2020-04, Vol.130 (4), p.2471-2487
Hauptverfasser: Durieu, Olivier, Samorodnitsky, Gennady, Wang, Yizao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the randomized Karlin model with parameter β∈(0,1), which is based on an infinite urn scheme. It has been shown before that when the randomization is bounded, the so-called odd-occupancy process scales to a fractional Brownian motion with Hurst index β∕2∈(0,1∕2). We show here that when the randomization is heavy-tailed with index α∈(0,2), then the odd-occupancy process scales to a (β∕α)-self-similar symmetric α-stable process with stationary increments.
ISSN:0304-4149
1879-209X
DOI:10.1016/j.spa.2019.07.008