From infinite urn schemes to self-similar stable processes
We investigate the randomized Karlin model with parameter β∈(0,1), which is based on an infinite urn scheme. It has been shown before that when the randomization is bounded, the so-called odd-occupancy process scales to a fractional Brownian motion with Hurst index β∕2∈(0,1∕2). We show here that whe...
Gespeichert in:
Veröffentlicht in: | Stochastic processes and their applications 2020-04, Vol.130 (4), p.2471-2487 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the randomized Karlin model with parameter β∈(0,1), which is based on an infinite urn scheme. It has been shown before that when the randomization is bounded, the so-called odd-occupancy process scales to a fractional Brownian motion with Hurst index β∕2∈(0,1∕2). We show here that when the randomization is heavy-tailed with index α∈(0,2), then the odd-occupancy process scales to a (β∕α)-self-similar symmetric α-stable process with stationary increments. |
---|---|
ISSN: | 0304-4149 1879-209X |
DOI: | 10.1016/j.spa.2019.07.008 |