Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of human oral Capnocytophaga species
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for rapid identification of cfxA PCR positive and negative Capnocytophaga strains. Colonies were grown on blood agar, incubated anaerobically at 37 °C for 48 h, and were then evaluated by MALDI-...
Gespeichert in:
Veröffentlicht in: | Anaerobe 2017-12, Vol.48, p.89-93 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was evaluated for rapid identification of cfxA PCR positive and negative Capnocytophaga strains. Colonies were grown on blood agar, incubated anaerobically at 37 °C for 48 h, and were then evaluated by MALDI-TOF MS and 16S rRNA gene sequencing. Both methods identified all colonies to the genus level. The MALDI-TOF MS method gave the same result, at the species level, as 16S rRNA gene sequencing for 41/53 Capnocytophaga sp. strains (77.4%), but the limit of this technique was the absence of some species (C. leadbetteri, C. AHN) in the Biotyper-Bruker® database used in this study. Distinction between the cefotaxime resistant and susceptible strains was unsuccessful using the MALDI-TOF MS method. This technique had low discriminatory power to rapidly detect beta-lactamase-producing Capnocytophaga strains in clinical samples. However, the results from a score-oriented dendrogram confirmed MALDI-TOF MS is a rapid, inexpensive, and reliable method for Capnocytophaga species identification. Enrichment of the reference database used (Biotyper®) will improve future results. |
---|---|
ISSN: | 1075-9964 1095-8274 |
DOI: | 10.1016/j.anaerobe.2017.07.003 |