Species Coexistence in Nitrifying Chemostats: A Model of Microbial Interactions
In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB) or nitrite-oxidizing bacteria (NOB)) of a nitrification reactor-operated continuously over 525 days with varying inputs-were assigned using a mathematical modeling approach together with the monitoring of bacterial p...
Gespeichert in:
Veröffentlicht in: | Processes 2016-12, Vol.4 (4), p.51-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a previous study, the two nitrifying functions (ammonia oxidizing bacteria (AOB) or nitrite-oxidizing bacteria (NOB)) of a nitrification reactor-operated continuously over 525 days with varying inputs-were assigned using a mathematical modeling approach together with the monitoring of bacterial phylotypes. Based on these theoretical identifications, we develop here a chemostat model that does not explicitly include only the resources’ dynamics (different forms of soluble nitrogen) but also explicitly takes into account microbial inter- and intra-species interactions for the four dominant phylotypes detected in the chemostat. A comparison of the models obtained with and without interactions has shown that such interactions permit the coexistence of two competing ammonium-oxidizing bacteria and two competing nitrite-oxidizing bacteria in competition for ammonium and nitrite, respectively. These interactions are analyzed and discussed. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr4040051 |