On the Lavrentiev phenomenon for multiple integral scalar variational problems
We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in b...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2014-05, Vol.266 (9), p.5921-5954 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5954 |
---|---|
container_issue | 9 |
container_start_page | 5921 |
container_title | Journal of functional analysis |
container_volume | 266 |
creator | Bousquet, Pierre Mariconda, Carlo Treu, Giulia |
description | We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in both variables or a sum of functions F(s,ξ)=a(s)g(ξ)+b(s) with g convex and s↦a(s)g(0)+b(s) satisfying a non-oscillatory condition at infinity. We thus derive the non-occurrence of the Lavrentiev phenomenon for unnecessarily convex functionals of the gradient. No growth conditions are assumed. |
doi_str_mv | 10.1016/j.jfa.2013.12.020 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01597776v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022123613004874</els_id><sourcerecordid>oai_HAL_hal_01597776v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-56b9f1e2e132e2212328c6467406c3d718521d106bd2bf3b583909dc419562473</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-5emjNJG3S4mlZ_ILiXvQc0nTqpvRjSWrBf2-WFY8ehoHhfYaZh5BbYCkwkPdd2rUm5QxECjxlnJ2RFbBSJkwV4pysGOM8AS7kJbkKoWMMQGb5irztRjrvkVZm8TjODhd62OM4DbFG2k6eDl_97A49UjfO-OlNT4M1vfF0Md6Z2U1jHB38VPc4hGty0Zo-4M1vX5OPp8f37UtS7Z5ft5sqsUJlc5LLumwBOYLgyHm8ixdWZlJlTFrRKChyDg0wWTe8bkWdF6JkZWMzKHPJMyXW5O60d296ffBuMP5bT8bpl02ljzMGeamUkgvELJyy1k8heGz_AGD6KE93OsrTR3kauI7yIvNwYjA-sTj0OliHo8XGebSzbib3D_0DR3517A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Lavrentiev phenomenon for multiple integral scalar variational problems</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bousquet, Pierre ; Mariconda, Carlo ; Treu, Giulia</creator><creatorcontrib>Bousquet, Pierre ; Mariconda, Carlo ; Treu, Giulia</creatorcontrib><description>We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in both variables or a sum of functions F(s,ξ)=a(s)g(ξ)+b(s) with g convex and s↦a(s)g(0)+b(s) satisfying a non-oscillatory condition at infinity. We thus derive the non-occurrence of the Lavrentiev phenomenon for unnecessarily convex functionals of the gradient. No growth conditions are assumed.</description><identifier>ISSN: 0022-1236</identifier><identifier>EISSN: 1096-0783</identifier><identifier>DOI: 10.1016/j.jfa.2013.12.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analysis of PDEs ; Lavrentiev ; Lavrentiev gap ; Lavrentiev phenomenon ; Lipschitz approximation ; Mathematics ; Regularity ; Star-shaped domain</subject><ispartof>Journal of functional analysis, 2014-05, Vol.266 (9), p.5921-5954</ispartof><rights>2013 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-56b9f1e2e132e2212328c6467406c3d718521d106bd2bf3b583909dc419562473</citedby><cites>FETCH-LOGICAL-c374t-56b9f1e2e132e2212328c6467406c3d718521d106bd2bf3b583909dc419562473</cites><orcidid>0000-0002-0649-1571</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022123613004874$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01597776$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousquet, Pierre</creatorcontrib><creatorcontrib>Mariconda, Carlo</creatorcontrib><creatorcontrib>Treu, Giulia</creatorcontrib><title>On the Lavrentiev phenomenon for multiple integral scalar variational problems</title><title>Journal of functional analysis</title><description>We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in both variables or a sum of functions F(s,ξ)=a(s)g(ξ)+b(s) with g convex and s↦a(s)g(0)+b(s) satisfying a non-oscillatory condition at infinity. We thus derive the non-occurrence of the Lavrentiev phenomenon for unnecessarily convex functionals of the gradient. No growth conditions are assumed.</description><subject>Analysis of PDEs</subject><subject>Lavrentiev</subject><subject>Lavrentiev gap</subject><subject>Lavrentiev phenomenon</subject><subject>Lipschitz approximation</subject><subject>Mathematics</subject><subject>Regularity</subject><subject>Star-shaped domain</subject><issn>0022-1236</issn><issn>1096-0783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-5emjNJG3S4mlZ_ILiXvQc0nTqpvRjSWrBf2-WFY8ehoHhfYaZh5BbYCkwkPdd2rUm5QxECjxlnJ2RFbBSJkwV4pysGOM8AS7kJbkKoWMMQGb5irztRjrvkVZm8TjODhd62OM4DbFG2k6eDl_97A49UjfO-OlNT4M1vfF0Md6Z2U1jHB38VPc4hGty0Zo-4M1vX5OPp8f37UtS7Z5ft5sqsUJlc5LLumwBOYLgyHm8ixdWZlJlTFrRKChyDg0wWTe8bkWdF6JkZWMzKHPJMyXW5O60d296ffBuMP5bT8bpl02ljzMGeamUkgvELJyy1k8heGz_AGD6KE93OsrTR3kauI7yIvNwYjA-sTj0OliHo8XGebSzbib3D_0DR3517A</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Bousquet, Pierre</creator><creator>Mariconda, Carlo</creator><creator>Treu, Giulia</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0649-1571</orcidid></search><sort><creationdate>20140501</creationdate><title>On the Lavrentiev phenomenon for multiple integral scalar variational problems</title><author>Bousquet, Pierre ; Mariconda, Carlo ; Treu, Giulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-56b9f1e2e132e2212328c6467406c3d718521d106bd2bf3b583909dc419562473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis of PDEs</topic><topic>Lavrentiev</topic><topic>Lavrentiev gap</topic><topic>Lavrentiev phenomenon</topic><topic>Lipschitz approximation</topic><topic>Mathematics</topic><topic>Regularity</topic><topic>Star-shaped domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousquet, Pierre</creatorcontrib><creatorcontrib>Mariconda, Carlo</creatorcontrib><creatorcontrib>Treu, Giulia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousquet, Pierre</au><au>Mariconda, Carlo</au><au>Treu, Giulia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Lavrentiev phenomenon for multiple integral scalar variational problems</atitle><jtitle>Journal of functional analysis</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>266</volume><issue>9</issue><spage>5921</spage><epage>5954</epage><pages>5921-5954</pages><issn>0022-1236</issn><eissn>1096-0783</eissn><abstract>We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in both variables or a sum of functions F(s,ξ)=a(s)g(ξ)+b(s) with g convex and s↦a(s)g(0)+b(s) satisfying a non-oscillatory condition at infinity. We thus derive the non-occurrence of the Lavrentiev phenomenon for unnecessarily convex functionals of the gradient. No growth conditions are assumed.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jfa.2013.12.020</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0649-1571</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1236 |
ispartof | Journal of functional analysis, 2014-05, Vol.266 (9), p.5921-5954 |
issn | 0022-1236 1096-0783 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01597776v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis of PDEs Lavrentiev Lavrentiev gap Lavrentiev phenomenon Lipschitz approximation Mathematics Regularity Star-shaped domain |
title | On the Lavrentiev phenomenon for multiple integral scalar variational problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Lavrentiev%20phenomenon%20for%20multiple%20integral%20scalar%20variational%20problems&rft.jtitle=Journal%20of%20functional%20analysis&rft.au=Bousquet,%20Pierre&rft.date=2014-05-01&rft.volume=266&rft.issue=9&rft.spage=5921&rft.epage=5954&rft.pages=5921-5954&rft.issn=0022-1236&rft.eissn=1096-0783&rft_id=info:doi/10.1016/j.jfa.2013.12.020&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01597776v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022123613004874&rfr_iscdi=true |