On the Lavrentiev phenomenon for multiple integral scalar variational problems

We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2014-05, Vol.266 (9), p.5921-5954
Hauptverfasser: Bousquet, Pierre, Mariconda, Carlo, Treu, Giulia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in both variables or a sum of functions F(s,ξ)=a(s)g(ξ)+b(s) with g convex and s↦a(s)g(0)+b(s) satisfying a non-oscillatory condition at infinity. We thus derive the non-occurrence of the Lavrentiev phenomenon for unnecessarily convex functionals of the gradient. No growth conditions are assumed.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2013.12.020