On the Lavrentiev phenomenon for multiple integral scalar variational problems
We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in b...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2014-05, Vol.266 (9), p.5921-5954 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the non-occurrence of Lavrentiev gaps between Lipschitz and Sobolev functions for functionals of the formI(u)=∫ΩF(u,∇u),u|∂Ω=ϕ when ϕ:Rn→R is Lipschitz and Ω belongs to a wide class of open bounded sets in Rn containing Lipschitz domains. The Lagrangian F is assumed to be either convex in both variables or a sum of functions F(s,ξ)=a(s)g(ξ)+b(s) with g convex and s↦a(s)g(0)+b(s) satisfying a non-oscillatory condition at infinity. We thus derive the non-occurrence of the Lavrentiev phenomenon for unnecessarily convex functionals of the gradient. No growth conditions are assumed. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2013.12.020 |