A functional promoter variant in IL12B predisposes to cerebral malaria
The role of the Th1 pathway in the pathogenesis of severe malaria is unclear. We recently reported that a polymorphism with increasing IFNG transcription is associated with protection against cerebral malaria (CM). Interleukin-12 is required for Th1 cell differentiation, which is characterized by th...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2008-07, Vol.17 (14), p.2190-2195 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The role of the Th1 pathway in the pathogenesis of severe malaria is unclear. We recently reported that a polymorphism with increasing IFNG transcription is associated with protection against cerebral malaria (CM). Interleukin-12 is required for Th1 cell differentiation, which is characterized by the production of interferon-γ. We investigated 21 markers in IL12-related genes, including IL12A and IL12B encoding the two IL-12 (IL12p70) subunits, IL12p35 and IL12p40. We performed a family-based association study using a total sample set of 240 nuclear families. The IL12Bpro polymorphism was associated with susceptibility to CM. The CTCTAA allele and the GC/CTCTAA genotype are over-transmitted to children with CM (P = 0.0002 and 0.00002, respectively). We estimated the odds ratio to be 2.11 for risk of CM in heterozygous children [(95% confidence interval, 1.49–2.99); P < 0.0001]. Although the CTCTAA allele had a dominant effect on CM susceptibility, this effect is much stronger in heterozygous children, consistent with the functional effects of this allele in a heterozygous form. Heterozygosity for this polymorphism has been associated with reduced expression of the gene encoding IL12p40 and a low level of IL12p70 production. These results, together with the findings from immunological studies of low interferon-γ and IL-12 levels in CM, support a protective role for the Th1 pathway in CM. |
---|---|
ISSN: | 0964-6906 1460-2083 |
DOI: | 10.1093/hmg/ddn118 |