An approach to generalized one-dimensional self-similar elasticity

We employ a self-similar Laplacian in the one-dimensional infinite space and deduce a model for one-dimensional self-similar elasticity. As a consequence of self-similarity this Laplacian assumes the non-local form of a self-adjoint combination of fractional integrals. The linear elastic constitutiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2012-12, Vol.61, p.103-111
Hauptverfasser: Michelitsch, Thomas M., Maugin, Gérard A., Rahman, Mujibur, Derogar, Shahram, Nowakowski, Andrzej F., Nicolleau, Franck C.G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We employ a self-similar Laplacian in the one-dimensional infinite space and deduce a model for one-dimensional self-similar elasticity. As a consequence of self-similarity this Laplacian assumes the non-local form of a self-adjoint combination of fractional integrals. The linear elastic constitutive law becomes a non-local convolution with the elastic modulus function being a power-law kernel. We outline some principal features of a linear self-similar elasticity theory in one dimension. We find an anomalous behavior of the elastic modulus function reflecting a regime of critically slowly decreasing interparticle interactions in one dimension. The approach can be generalized to the n(n=1,2,3) dimensional physical space (Michelitsch, Maugin, Nowakowski, Nicolleau, & Rahman, to be published).
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2012.06.014