Pollicott–Ruelle spectrum and Witten Laplacians

We study the asymptotic behavior of eigenvalues and eigenmodes of the Witten Laplacian on a smooth compact Riemannian manifold without boundary. We show that they converge to the Pollicott–Ruelle spectral data of the corresponding gradient flow acting on appropriate anisotropic Sobolev spaces. As an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2021-01, Vol.23 (6), p.1797-1857
Hauptverfasser: Dang, Nguyen Viet, Rivière, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behavior of eigenvalues and eigenmodes of the Witten Laplacian on a smooth compact Riemannian manifold without boundary. We show that they converge to the Pollicott–Ruelle spectral data of the corresponding gradient flow acting on appropriate anisotropic Sobolev spaces. As an application of our methods, we also construct a natural family of quasimodes satisfying the Witten–Helffer–Sjöstrand tunneling formulas and the Fukaya conjecture on Witten deformation of the wedge product.
ISSN:1435-9855
1435-9863
DOI:10.4171/jems/1044