Pollicott–Ruelle spectrum and Witten Laplacians
We study the asymptotic behavior of eigenvalues and eigenmodes of the Witten Laplacian on a smooth compact Riemannian manifold without boundary. We show that they converge to the Pollicott–Ruelle spectral data of the corresponding gradient flow acting on appropriate anisotropic Sobolev spaces. As an...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2021-01, Vol.23 (6), p.1797-1857 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic behavior of eigenvalues and eigenmodes of the Witten Laplacian on a smooth compact Riemannian manifold without boundary. We show that they converge to the Pollicott–Ruelle spectral data of the corresponding gradient flow acting on appropriate anisotropic Sobolev spaces. As an application of our methods, we also construct a natural family of quasimodes satisfying the Witten–Helffer–Sjöstrand tunneling formulas and the Fukaya conjecture on Witten deformation of the wedge product. |
---|---|
ISSN: | 1435-9855 1435-9863 |
DOI: | 10.4171/jems/1044 |