Lions' maximal regularity problem with H 1 2 -regularity in time

We consider the problem of maximal regularity for non-autonomous Cauchy problems u ′ (t) + A(t) u(t) = f (t), t ∈ (0, τ ] u(0) = u 0. The time dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space H. We are interested in J.L. Lions's problem concern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2019-03, Vol.266 (6), p.3654-3678
Hauptverfasser: Achache, Mahdi, Ouhabaz, El Maati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of maximal regularity for non-autonomous Cauchy problems u ′ (t) + A(t) u(t) = f (t), t ∈ (0, τ ] u(0) = u 0. The time dependent operators A(t) are associated with (time dependent) sesquilinear forms on a Hilbert space H. We are interested in J.L. Lions's problem concerning maximal regularity of such equations. We give a positive answer to this problem under minimal regularity assumptions on the forms. Our main assumption is that the forms are piecewise H 1 2 with respect to the variable t. This regularity assumption is optimal and our results are the most general ones on this problem.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2018.09.015