Liouville type results for local minimizers of the micromagnetic energy

We study local minimizers of the micromagnetic energy in small ferromagnetic 3d convex particles for which we justify the Stoner–Wohlfarth approximation: given a uniformly convex shape Ω ⊂ R 3 , there exist δ c >0 and C > 0 such that for 0 < δ ≤ δ c any local minimizer m of the micromagneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2015-07, Vol.53 (3-4), p.525-560
Hauptverfasser: Alouges, François, Di Fratta, Giovanni, Merlet, Benoit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study local minimizers of the micromagnetic energy in small ferromagnetic 3d convex particles for which we justify the Stoner–Wohlfarth approximation: given a uniformly convex shape Ω ⊂ R 3 , there exist δ c >0 and C > 0 such that for 0 < δ ≤ δ c any local minimizer m of the micromagnetic energy in the particle δ Ω satisfies ‖ ∇ m ‖ L 2 ⩽ C δ 2 . In the case of ellipsoidal particles we strengthen this result by proving that, for δ small enough, local minimizers are exactly spatially uniform. This last result extends W.F. Brown’s fundamental theorem for fine 3d ferromagnetic particles Brown (J Appl Phys 39:463–488, 1968 ), Di Fratta et al. (Physica B 407(9):1368–1371, 2011 ) which states the same result but only for global minimizers. As a by-product of the method that we use, we establish a new Liouville type result for locally minimizing p -harmonic maps with values into a closed subset of a Hilbert space. Namely, we establish that in a smooth uniformly convex domain of R d any local minimizer of the p -Dirichlet energy ( p > 1 , p ≠ d ) is constant.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-014-0757-2