Impact of buffer gas quenching on the $^1S_0$ $\to$ $^1P_1$ ground-state atomic transition in nobelium

Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2017, Vol.71 (7)
Hauptverfasser: Chhetri, Premaditya, Ackermann, Dieter, Backe, Hartmut, Block, Michael, Cheal, Bradley, Düllmann, Christoph Emanuel, Even, Julia, Ferrer, Rafael, Giacoppo, Francesca, Götz, Stefan, Hessberger, Fritz Peter, Kaleja, Oliver, Khuyagbaatar, Jadambaa, Kunz, Peter, Laatiaoui, Mustapha, Lautenschläger, Felix, Lauth, Werner, Ramirez, Enrique Minaya, Mistry, Andrew Kishor, Raeder, Sebastian, Wraith, Calvin, Walther, Thomas, Yakushev, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are currently unknown.
ISSN:1434-6060
1434-6079
DOI:10.1140/epjd/e2017-80122-x