Positivity for fourth-order semilinear problems related to the Kirchhoff–Love functional
We study the ground states of the following generalization of the Kirchhoff-Love functional, $$J_\sigma(u)=\int_\Omega\dfrac{(\Delta u)^2}{2} - (1-\sigma)\int_\Omega det(\nabla^2u)-\int_\Omega F(x,u),$$ where $\Omega$ is a bounded convex domain in $\mathbb{R}^2$ with $C^{1,1}$ boundary and the nonli...
Gespeichert in:
Veröffentlicht in: | Analysis & PDE 2017-01, Vol.10 (4), p.943-982 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the ground states of the following generalization of the Kirchhoff-Love functional, $$J_\sigma(u)=\int_\Omega\dfrac{(\Delta u)^2}{2} - (1-\sigma)\int_\Omega det(\nabla^2u)-\int_\Omega F(x,u),$$ where $\Omega$ is a bounded convex domain in $\mathbb{R}^2$ with $C^{1,1}$ boundary and the nonlinearities involved are of sublinear type or superlinear with power growth. These critical points correspond to least-energy weak solutions to a fourth-order semilinear boundary value problem with Steklov boundary conditions depending on $\sigma$. Positivity of ground states is proved with different techniques according to the range of the parameter $\sigma\in\mathbb{R}$ and we also provide a convergence analysis for the ground states with respect to $\sigma$. Further results concerning positive radial solutions are established when the domain is a ball. |
---|---|
ISSN: | 2157-5045 1948-206X |
DOI: | 10.2140/apde.2017.10.943 |