Positivity for fourth-order semilinear problems related to the Kirchhoff–Love functional

We study the ground states of the following generalization of the Kirchhoff-Love functional, $$J_\sigma(u)=\int_\Omega\dfrac{(\Delta u)^2}{2} - (1-\sigma)\int_\Omega det(\nabla^2u)-\int_\Omega F(x,u),$$ where $\Omega$ is a bounded convex domain in $\mathbb{R}^2$ with $C^{1,1}$ boundary and the nonli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis & PDE 2017-01, Vol.10 (4), p.943-982
1. Verfasser: Romani, Giulio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the ground states of the following generalization of the Kirchhoff-Love functional, $$J_\sigma(u)=\int_\Omega\dfrac{(\Delta u)^2}{2} - (1-\sigma)\int_\Omega det(\nabla^2u)-\int_\Omega F(x,u),$$ where $\Omega$ is a bounded convex domain in $\mathbb{R}^2$ with $C^{1,1}$ boundary and the nonlinearities involved are of sublinear type or superlinear with power growth. These critical points correspond to least-energy weak solutions to a fourth-order semilinear boundary value problem with Steklov boundary conditions depending on $\sigma$. Positivity of ground states is proved with different techniques according to the range of the parameter $\sigma\in\mathbb{R}$ and we also provide a convergence analysis for the ground states with respect to $\sigma$. Further results concerning positive radial solutions are established when the domain is a ball.
ISSN:2157-5045
1948-206X
DOI:10.2140/apde.2017.10.943