Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori
Let P be a Laplace type operator acting on a smooth hermitean vector bundle V of fiber CN over a compact Riemannian manifold given locally by P=−[gμνu(x)∂μ∂ν+vν(x)∂ν+w(x)] where u,vν,w are MN(C)-valued functions with u(x) positive and invertible. For any a∈Γ(End(V)), we consider the asymptotics Tr(a...
Gespeichert in:
Veröffentlicht in: | Journal of geometry and physics 2018-07, Vol.129, p.1-24 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let P be a Laplace type operator acting on a smooth hermitean vector bundle V of fiber CN over a compact Riemannian manifold given locally by P=−[gμνu(x)∂μ∂ν+vν(x)∂ν+w(x)] where u,vν,w are MN(C)-valued functions with u(x) positive and invertible. For any a∈Γ(End(V)), we consider the asymptotics Tr(ae−tP)∼t↓0+∑r=0∞ar(a,P)t(r−d)∕2 where the coefficients ar(a,P) can be written as an integral of the functions ar(a,P)(x)=tr[a(x)Rr(x)].
The computation of R2 is performed opening the opportunity to calculate the modular scalar curvature for noncommutative tori. |
---|---|
ISSN: | 0393-0440 1879-1662 |
DOI: | 10.1016/j.geomphys.2018.02.014 |