Spatiotemporal canards in neural field equations

Canards are special solutions to ordinary differential equations that follow invariant repelling slow manifolds for long time intervals. In realistic biophysical single-cell models, canards are responsible for several complex neural rhythms observed experimentally, but their existence and role in sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-04, Vol.95 (4-1), p.042205-042205, Article 042205
Hauptverfasser: Avitabile, D, Desroches, M, Knobloch, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Canards are special solutions to ordinary differential equations that follow invariant repelling slow manifolds for long time intervals. In realistic biophysical single-cell models, canards are responsible for several complex neural rhythms observed experimentally, but their existence and role in spatially extended systems is largely unexplored. We identify and describe a type of coherent structure in which a spatial pattern displays temporal canard behavior. Using interfacial dynamics and geometric singular perturbation theory, we classify spatiotemporal canards and give conditions for the existence of folded-saddle and folded-node canards. We find that spatiotemporal canards are robust to changes in the synaptic connectivity and firing rate. The theory correctly predicts the existence of spatiotemporal canards with octahedral symmetry in a neural field model posed on the unit sphere.
ISSN:2470-0045
2470-0053
DOI:10.1103/PhysRevE.95.042205