Random cascades on wavelet dyadic trees
We introduce a new class of random fractal functions using the orthogonal wavelet transform. These functions are built recursively in the space-scale half-plane of the orthogonal wavelet transform, “cascading” from an arbitrary given large scale towards small scales. To each random fractal function...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 1998-08, Vol.39 (8), p.4142-4164 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a new class of random fractal functions using the orthogonal wavelet transform. These functions are built recursively in the space-scale half-plane of the orthogonal wavelet transform, “cascading” from an arbitrary given large scale towards small scales. To each random fractal function corresponds a random cascading process (referred to as a
W
-cascade) on the dyadic tree of its orthogonal wavelet coefficients. We discuss the convergence of these cascades and the regularity of the so-obtained random functions by studying the support of their singularity spectra. Then, we show that very different statistical quantities such as correlation functions on the wavelet coefficients or the wavelet-based multifractal formalism partition functions can be used to characterize very precisely the underlying cascading process. We illustrate all our results on various numerical examples. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.532489 |