First physics results at the physical pion mass from N f = 2 Wilson twisted mass fermions at maximal twist
We present physics results from simulations of QCD using Nf=2 dynamical Wilson twisted mass fermions at the physical value of the pion mass. These simulations are enabled by the addition of the clover term to the twisted mass quark action. We show evidence that compared to previous simulations witho...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2017-05, Vol.95 (9), Article 094515 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present physics results from simulations of QCD using Nf=2 dynamical Wilson twisted mass fermions at the physical value of the pion mass. These simulations are enabled by the addition of the clover term to the twisted mass quark action. We show evidence that compared to previous simulations without this term, the pion mass splitting due to isospin breaking is almost completely eliminated. Using this new action, we compute the masses and decay constants of pseudoscalar mesons involving the dynamical up and down as well as valence strange and charm quarks at one value of the lattice spacing, a≈0.09 fm. Further, we determine renormalized quark masses as well as their scale-independent ratios, in excellent agreement with other lattice determinations in the continuum limit. In the baryon sector, we show that the nucleon mass is compatible with its physical value and that the masses of the Δ baryons do not show any sign of isospin breaking. Finally, we compute the electron, muon and tau lepton anomalous magnetic moments and show the results to be consistent with extrapolations of older ETMC data to the continuum and physical pion mass limits. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.95.094515 |