Thermal and vibrational characterization of human skin
For a better understanding of the molecular and organizational changes in human dermis, biophysical methods were tested. The aim of this study was to find suitable and reproducible biomarkers for further clinical studies on intrinsic and extrinsic aging of dermis. Thermoporometry, hydric organizatio...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2017-02, Vol.127 (2), p.1143-1154 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a better understanding of the molecular and organizational changes in human dermis, biophysical methods were tested. The aim of this study was to find suitable and reproducible biomarkers for further clinical studies on intrinsic and extrinsic aging of dermis. Thermoporometry, hydric organization and thermal transitions of fresh and frozen skins were determined by differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to identify the absorption bands of the dermis especially in the 1800-1000 cm.sup.-1 zone and to discriminate between the different secondary structures of proteins. A widening of the pore size distribution is evidenced with freezing, but there is no significant difference between the hydric organization and the endothermic collagen denaturation of fresh and frozen skins. The global FTIR spectra and the second derivative spectra in the scanned zone are also identical in fresh and frozen dermis, validating the storage protocol. DSC and FTIR are well-suited techniques to characterize human skin, giving accurate results with high reproducibility. The acquisition of thermal and vibrational biomarkers of the skin at the mesoscale and nanoscale contributes to its better knowledge and is promising for further studies on skin aging. |
---|---|
ISSN: | 1388-6150 1588-2926 1572-8943 |
DOI: | 10.1007/s10973-016-5384-z |