Stochastic Control for Mean-Field Stochastic Partial Differential Equations with Jumps

We study optimal control for mean-field stochastic partial differential equations (stochastic evolution equations) driven by a Brownian motion and an independent Poisson random measure, in case of partial information control. One important novelty of our problem is represented by the introduction of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2018-03, Vol.176 (3), p.559-584
Hauptverfasser: Dumitrescu, Roxana, Øksendal, Bernt, Sulem, Agnès
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study optimal control for mean-field stochastic partial differential equations (stochastic evolution equations) driven by a Brownian motion and an independent Poisson random measure, in case of partial information control. One important novelty of our problem is represented by the introduction of general mean-field operators, acting on both the controlled state process and the control process. We first formulate a sufficient and a necessary maximum principle for this type of control. We then prove the existence and uniqueness of the solution of such general forward and backward mean-field stochastic partial differential equations. We apply our results to find the explicit optimal control for an optimal harvesting problem.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-018-1243-3