Modular polynomials on Hilbert surfaces
We describe an evaluation/interpolation approach to compute modular polynomials on a Hilbert surface, which parametrizes abelian surfaces with maximal real multiplication. Under some heuristics we obtain a quasi-linear algorithm. The corresponding modular polynomials are much smaller than the ones o...
Gespeichert in:
Veröffentlicht in: | Journal of number theory 2020-11, Vol.216, p.403-459 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe an evaluation/interpolation approach to compute modular polynomials on a Hilbert surface, which parametrizes abelian surfaces with maximal real multiplication. Under some heuristics we obtain a quasi-linear algorithm. The corresponding modular polynomials are much smaller than the ones on the Siegel threefold. We explain how to compute even smaller polynomials by using pullbacks of theta functions to the Hilbert surface. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1016/j.jnt.2020.04.014 |