A short proof of the Gaillard–Matveev theorem based on shape invariance arguments

We propose a simple alternative proof of the Wronskian representation formula obtained by Gaillard and Matveev for the trigonometric Darboux–Pöschl–Teller (TDPT) potentials. It rests on the use of singular Darboux–Bäcklund transformations applied to the free particle system combined to the shape inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2014-05, Vol.378 (26-27), p.1755-1759
1. Verfasser: Grandati, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a simple alternative proof of the Wronskian representation formula obtained by Gaillard and Matveev for the trigonometric Darboux–Pöschl–Teller (TDPT) potentials. It rests on the use of singular Darboux–Bäcklund transformations applied to the free particle system combined to the shape invariance properties of the TDPT. •Wronskian representation of TDPT and Bessel potentials.•Simple proof of Gaillard–Matveev theorem.•Regular and singular extensions of the constant potential.•Darboux transformations based on excited states.•Confluent case and Wronskian Rayleigh formula.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2014.03.020