Regression modelling on stratified data with the lasso

We consider the estimation of regression models on strata defined using a categorical covariate, in order to identify interactions between this categorical covariate and the other predictors. A basic approach requires the choice of a reference stratum. We show that the performance of a penalized ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2017-03, Vol.104 (1), p.83-96
Hauptverfasser: OLLIER, E., VIALLON, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the estimation of regression models on strata defined using a categorical covariate, in order to identify interactions between this categorical covariate and the other predictors. A basic approach requires the choice of a reference stratum. We show that the performance of a penalized version of this approach depends on this arbitrary choice, and propose an approach that bypasses this at almost no additional computational cost. Regarding model selection consistency, our proposal mimics the strategy based on an optimal and covariate-specific choice for the reference stratum. An empirical study confirms that our proposal generally outperforms the basic approach in the identification and description of the interactions. An illustration on gene expression data is provided.
ISSN:0006-3444
1464-3510
DOI:10.1093/biomet/asw065