On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0
In this paper we present new results related to the ones obtained in our previous papers on the singular semilinear elliptic problem u≥0inΩ,−divA(x)Du=F(x,u)inΩ,u=0on∂Ω,where F(x,s) is a Carathéodory function which can take the value +∞ when s=0. Three new topics are investigated. First, we present...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2018-12, Vol.177, p.491-523 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | |
container_start_page | 491 |
container_title | Nonlinear analysis |
container_volume | 177 |
creator | Giachetti, Daniela Martínez-Aparicio, Pedro J. Murat, François |
description | In this paper we present new results related to the ones obtained in our previous papers on the singular semilinear elliptic problem u≥0inΩ,−divA(x)Du=F(x,u)inΩ,u=0on∂Ω,where F(x,s) is a Carathéodory function which can take the value +∞ when s=0. Three new topics are investigated. First, we present definitions which we prove to be equivalent to the definition given in our paper Giachetti, Martínez-Aparicio, Murat (2018). Second, we study the set {x∈Ω:u(x)=0}, which is the set where the right-hand side of the equation could be singular in Ω, and we prove that actually, at almost every point x of this set, the right-hand side is non singular since one has F(x,0)=0. Third, we consider the case where a zeroth order term μu, with μ a nonnegative bounded Radon measure which also belongs to H−1(Ω), is added to the left-hand side of the singular problem considered above. We explain how the definition of solution given in Giachetti, Martínez-Aparicio, Murat (2018) has to be modified in such a case, and we explicitly give the a priori estimates that every such solution satisfies (these estimates are at the basis of our existence, stability and uniqueness results). Finally we give two counterexamples which prove that when a zeroth order term μu of the above type is added to the left-hand side of the problem, the strong maximum principle in general does not hold anymore. |
doi_str_mv | 10.1016/j.na.2018.04.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01505876v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X18301111</els_id><sourcerecordid>2151190994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-2573508e831372a6bf741a60677b60ccf32295cab5d71e49f3729f67f0db4cfd3</originalsourceid><addsrcrecordid>eNp1kMFLHDEUxkOp0K323mPAUw8zviSTZEbwIFK1sOClhd5CJpO4WWaTNcko_vfNutKbp8d7_L6P930IfSfQEiDiYtsG3VIgfQtdC5R9QivSS9ZwSvhntAImaMM78fcL-przFgCIZGKFzEPAZWPxZJ0PvvgYcHRvlxzn5W0vEWuc7c7PPlidsJ1nvy_e4H2K42x3-MWXzQEpKYZHnH14XGadfHnFuuDlCs7QidNztt_e5yn6c_vz9819s364-3VzvW4M7UVpKJeMQ297RpikWoxOdkQLEFKOAoxxjNKBGz3ySRLbDa5SgxPSwTR2xk3sFP04-m70rPbJ73R6VVF7dX-9VocbEA68l-KZVPb8yNYQT4vNRW3jkkJ9T9XCCBlgGLpKwZEyKeacrPtvS0AdaldbFbQ61K6gU7X2Krk8SmxN-uxtUtl4G4ydfLKmqCn6j8X_AKApiKQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2151190994</pqid></control><display><type>article</type><title>On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Giachetti, Daniela ; Martínez-Aparicio, Pedro J. ; Murat, François</creator><creatorcontrib>Giachetti, Daniela ; Martínez-Aparicio, Pedro J. ; Murat, François</creatorcontrib><description>In this paper we present new results related to the ones obtained in our previous papers on the singular semilinear elliptic problem u≥0inΩ,−divA(x)Du=F(x,u)inΩ,u=0on∂Ω,where F(x,s) is a Carathéodory function which can take the value +∞ when s=0. Three new topics are investigated. First, we present definitions which we prove to be equivalent to the definition given in our paper Giachetti, Martínez-Aparicio, Murat (2018). Second, we study the set {x∈Ω:u(x)=0}, which is the set where the right-hand side of the equation could be singular in Ω, and we prove that actually, at almost every point x of this set, the right-hand side is non singular since one has F(x,0)=0. Third, we consider the case where a zeroth order term μu, with μ a nonnegative bounded Radon measure which also belongs to H−1(Ω), is added to the left-hand side of the singular problem considered above. We explain how the definition of solution given in Giachetti, Martínez-Aparicio, Murat (2018) has to be modified in such a case, and we explicitly give the a priori estimates that every such solution satisfies (these estimates are at the basis of our existence, stability and uniqueness results). Finally we give two counterexamples which prove that when a zeroth order term μu of the above type is added to the left-hand side of the problem, the strong maximum principle in general does not hold anymore.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2018.04.023</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Analysis of PDEs ; Definition of the solution ; Mathematical analysis ; Mathematics ; Maximum principle ; Nonlinear equations ; Radon ; Semilinear elliptic problems ; Singularity at [formula omitted] ; Strong maximum principle ; Studies ; Zeroth order term with coefficient a measure</subject><ispartof>Nonlinear analysis, 2018-12, Vol.177, p.491-523</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-2573508e831372a6bf741a60677b60ccf32295cab5d71e49f3729f67f0db4cfd3</citedby><cites>FETCH-LOGICAL-c286t-2573508e831372a6bf741a60677b60ccf32295cab5d71e49f3729f67f0db4cfd3</cites><orcidid>0000-0002-7018-420X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2018.04.023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27913,27914,45984</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01505876$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giachetti, Daniela</creatorcontrib><creatorcontrib>Martínez-Aparicio, Pedro J.</creatorcontrib><creatorcontrib>Murat, François</creatorcontrib><title>On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0</title><title>Nonlinear analysis</title><description>In this paper we present new results related to the ones obtained in our previous papers on the singular semilinear elliptic problem u≥0inΩ,−divA(x)Du=F(x,u)inΩ,u=0on∂Ω,where F(x,s) is a Carathéodory function which can take the value +∞ when s=0. Three new topics are investigated. First, we present definitions which we prove to be equivalent to the definition given in our paper Giachetti, Martínez-Aparicio, Murat (2018). Second, we study the set {x∈Ω:u(x)=0}, which is the set where the right-hand side of the equation could be singular in Ω, and we prove that actually, at almost every point x of this set, the right-hand side is non singular since one has F(x,0)=0. Third, we consider the case where a zeroth order term μu, with μ a nonnegative bounded Radon measure which also belongs to H−1(Ω), is added to the left-hand side of the singular problem considered above. We explain how the definition of solution given in Giachetti, Martínez-Aparicio, Murat (2018) has to be modified in such a case, and we explicitly give the a priori estimates that every such solution satisfies (these estimates are at the basis of our existence, stability and uniqueness results). Finally we give two counterexamples which prove that when a zeroth order term μu of the above type is added to the left-hand side of the problem, the strong maximum principle in general does not hold anymore.</description><subject>Analysis of PDEs</subject><subject>Definition of the solution</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Maximum principle</subject><subject>Nonlinear equations</subject><subject>Radon</subject><subject>Semilinear elliptic problems</subject><subject>Singularity at [formula omitted]</subject><subject>Strong maximum principle</subject><subject>Studies</subject><subject>Zeroth order term with coefficient a measure</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLHDEUxkOp0K323mPAUw8zviSTZEbwIFK1sOClhd5CJpO4WWaTNcko_vfNutKbp8d7_L6P930IfSfQEiDiYtsG3VIgfQtdC5R9QivSS9ZwSvhntAImaMM78fcL-przFgCIZGKFzEPAZWPxZJ0PvvgYcHRvlxzn5W0vEWuc7c7PPlidsJ1nvy_e4H2K42x3-MWXzQEpKYZHnH14XGadfHnFuuDlCs7QidNztt_e5yn6c_vz9819s364-3VzvW4M7UVpKJeMQ297RpikWoxOdkQLEFKOAoxxjNKBGz3ySRLbDa5SgxPSwTR2xk3sFP04-m70rPbJ73R6VVF7dX-9VocbEA68l-KZVPb8yNYQT4vNRW3jkkJ9T9XCCBlgGLpKwZEyKeacrPtvS0AdaldbFbQ61K6gU7X2Krk8SmxN-uxtUtl4G4ydfLKmqCn6j8X_AKApiKQ</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Giachetti, Daniela</creator><creator>Martínez-Aparicio, Pedro J.</creator><creator>Murat, François</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7018-420X</orcidid></search><sort><creationdate>20181201</creationdate><title>On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0</title><author>Giachetti, Daniela ; Martínez-Aparicio, Pedro J. ; Murat, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-2573508e831372a6bf741a60677b60ccf32295cab5d71e49f3729f67f0db4cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis of PDEs</topic><topic>Definition of the solution</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Maximum principle</topic><topic>Nonlinear equations</topic><topic>Radon</topic><topic>Semilinear elliptic problems</topic><topic>Singularity at [formula omitted]</topic><topic>Strong maximum principle</topic><topic>Studies</topic><topic>Zeroth order term with coefficient a measure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giachetti, Daniela</creatorcontrib><creatorcontrib>Martínez-Aparicio, Pedro J.</creatorcontrib><creatorcontrib>Murat, François</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giachetti, Daniela</au><au>Martínez-Aparicio, Pedro J.</au><au>Murat, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>177</volume><spage>491</spage><epage>523</epage><pages>491-523</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this paper we present new results related to the ones obtained in our previous papers on the singular semilinear elliptic problem u≥0inΩ,−divA(x)Du=F(x,u)inΩ,u=0on∂Ω,where F(x,s) is a Carathéodory function which can take the value +∞ when s=0. Three new topics are investigated. First, we present definitions which we prove to be equivalent to the definition given in our paper Giachetti, Martínez-Aparicio, Murat (2018). Second, we study the set {x∈Ω:u(x)=0}, which is the set where the right-hand side of the equation could be singular in Ω, and we prove that actually, at almost every point x of this set, the right-hand side is non singular since one has F(x,0)=0. Third, we consider the case where a zeroth order term μu, with μ a nonnegative bounded Radon measure which also belongs to H−1(Ω), is added to the left-hand side of the singular problem considered above. We explain how the definition of solution given in Giachetti, Martínez-Aparicio, Murat (2018) has to be modified in such a case, and we explicitly give the a priori estimates that every such solution satisfies (these estimates are at the basis of our existence, stability and uniqueness results). Finally we give two counterexamples which prove that when a zeroth order term μu of the above type is added to the left-hand side of the problem, the strong maximum principle in general does not hold anymore.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2018.04.023</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-7018-420X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2018-12, Vol.177, p.491-523 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01505876v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Analysis of PDEs Definition of the solution Mathematical analysis Mathematics Maximum principle Nonlinear equations Radon Semilinear elliptic problems Singularity at [formula omitted] Strong maximum principle Studies Zeroth order term with coefficient a measure |
title | On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20definition%20of%20the%20solution%20to%20a%20semilinear%20elliptic%20problem%20with%20a%20strong%20singularity%20at%20u=0&rft.jtitle=Nonlinear%20analysis&rft.au=Giachetti,%20Daniela&rft.date=2018-12-01&rft.volume=177&rft.spage=491&rft.epage=523&rft.pages=491-523&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2018.04.023&rft_dat=%3Cproquest_hal_p%3E2151190994%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2151190994&rft_id=info:pmid/&rft_els_id=S0362546X18301111&rfr_iscdi=true |