On the definition of the solution to a semilinear elliptic problem with a strong singularity at u=0
In this paper we present new results related to the ones obtained in our previous papers on the singular semilinear elliptic problem u≥0inΩ,−divA(x)Du=F(x,u)inΩ,u=0on∂Ω,where F(x,s) is a Carathéodory function which can take the value +∞ when s=0. Three new topics are investigated. First, we present...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2018-12, Vol.177, p.491-523 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present new results related to the ones obtained in our previous papers on the singular semilinear elliptic problem u≥0inΩ,−divA(x)Du=F(x,u)inΩ,u=0on∂Ω,where F(x,s) is a Carathéodory function which can take the value +∞ when s=0. Three new topics are investigated. First, we present definitions which we prove to be equivalent to the definition given in our paper Giachetti, Martínez-Aparicio, Murat (2018). Second, we study the set {x∈Ω:u(x)=0}, which is the set where the right-hand side of the equation could be singular in Ω, and we prove that actually, at almost every point x of this set, the right-hand side is non singular since one has F(x,0)=0. Third, we consider the case where a zeroth order term μu, with μ a nonnegative bounded Radon measure which also belongs to H−1(Ω), is added to the left-hand side of the singular problem considered above. We explain how the definition of solution given in Giachetti, Martínez-Aparicio, Murat (2018) has to be modified in such a case, and we explicitly give the a priori estimates that every such solution satisfies (these estimates are at the basis of our existence, stability and uniqueness results). Finally we give two counterexamples which prove that when a zeroth order term μu of the above type is added to the left-hand side of the problem, the strong maximum principle in general does not hold anymore. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2018.04.023 |