The earliest phases of high-mass star formation, as seen in NGC 6334 by Herschel-HOBYS

Aims. To constrain models of high-mass star formation, the Herschel-HOBYS key program aims at discovering massive dense cores (MDCs) able to host the high-mass analogs of low-mass prestellar cores, which have been searched for over the past decade. We here focus on NGC 6334, one of the best-studied...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2017-06, Vol.602, p.A77
Hauptverfasser: Tigé, J., Motte, F., Russeil, D., Zavagno, A., Hennemann, M., Schneider, N., Hill, T., Nguyen Luong, Q., Di Francesco, J., Bontemps, S., Louvet, F., Didelon, P., Könyves, V., André, Ph, Leuleu, G., Bardagi, J., Anderson, L. D., Arzoumanian, D., Benedettini, M., Bernard, J.-P., Elia, D., Figueira, M., Kirk, J., Martin, P. G., Minier, V., Molinari, S., Nony, T., Persi, P., Pezzuto, S., Polychroni, D., Rayner, T., Rivera-Ingraham, A., Roussel, H., Rygl, K., Spinoglio, L., White, G. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims. To constrain models of high-mass star formation, the Herschel-HOBYS key program aims at discovering massive dense cores (MDCs) able to host the high-mass analogs of low-mass prestellar cores, which have been searched for over the past decade. We here focus on NGC 6334, one of the best-studied HOBYS molecular cloud complexes. Methods. We used Herschel/PACS and SPIRE 70−500 μm images of the NGC 6334 complex complemented with (sub)millimeter and mid-infrared data. We built a complete procedure to extract ~0.1 pc dense cores with the getsources software, which simultaneously measures their far-infrared to millimeter fluxes. We carefully estimated the temperatures and masses of these dense cores from their spectral energy distributions (SEDs). We also identified the densest pc-scale cloud structures of NGC 6334, one 2 pc × 1 pc ridge and two 0.8 pc × 0.8 pc hubs, with volume-averaged densities of ~105 cm-3. Results. A cross-correlation with high-mass star formation signposts suggests a mass threshold of 75 M⊙ for MDCs in NGC 6334. MDCs have temperatures of 9.5−40 K, masses of 75−1000 M⊙, and densities of 1 × 105−7 × 107 cm-3. Their mid-infrared emission is used to separate 6 IR-bright and 10 IR-quiet protostellar MDCs while their 70 μm emission strength, with respect to fitted SEDs, helps identify 16 starless MDC candidates. The ability of the latter to host high-mass prestellar cores is investigated here and remains questionable. An increase in mass and density from the starless to the IR-quiet and IR-bright phases suggests that the protostars and MDCs simultaneously grow in mass. The statistical lifetimes of the high-mass prestellar and protostellar core phases, estimated to be 1−7 × 104 yr and at most 3 × 105 yr respectively, suggest a dynamical scenario of high-mass star formation. Conclusions. The present study provides good mass estimates for a statistically significant sample, covering the earliest phases of high-mass star formation. High-mass prestellar cores may not exist in NGC 6334, favoring a scenario presented here, which simultaneously forms clouds, ridges, MDCs, and high-mass protostars.
ISSN:0004-6361
1432-0746
1432-0756
DOI:10.1051/0004-6361/201628989