Remarks on the Operator-Norm Convergence of the Trotter Product Formula
We revise the operator-norm convergence of the Trotter product formula for a pair { A , B } of generators of semigroups on a Banach space. Operator-norm convergence holds true if the dominating operator A generates a holomorphic contraction semigroup and B is a A -infinitesimally small generator of...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2018-04, Vol.90 (2), p.1-14, Article 15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We revise the operator-norm convergence of the Trotter product formula for a pair
{
A
,
B
}
of generators of semigroups on a Banach space. Operator-norm convergence holds true if the dominating operator
A
generates a holomorphic contraction semigroup and
B
is a
A
-infinitesimally small generator of a contraction semigroup, in particular, if
B
is a bounded operator. Inspired by studies of evolution semigroups it is shown in the present paper that the operator-norm convergence generally fails even for bounded operators
B
if
A
is not a holomorphic generator. Moreover, it is shown that operator norm convergence of the Trotter product formula can be arbitrary slow. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-018-2424-z |