Empirical Correction of XBT Data
The authors use a collocation method between XBT and CTD/Ocean Station Data (OSD; including bottle cast and low-resolution CTD) from World Ocean Database 2005 (WOD2005) to statistically correct the XBT fall rate. An analysis of the annual median bias on depth shows that it is necessary to apply a th...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2012-07, Vol.29 (7), p.960-973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors use a collocation method between XBT and CTD/Ocean Station Data (OSD; including bottle cast and low-resolution CTD) from World Ocean Database 2005 (WOD2005) to statistically correct the XBT fall rate. An analysis of the annual median bias on depth shows that it is necessary to apply a thermal correction, a second-order correction on the depth, as well as a depth offset representing measurement errors during XBT deployment. Data were separated into several categories: shallow and deep XBTs and below or above 10°C of vertically averaged ocean temperatures (in the top 400 m). Also, XBT measurements in the western Pacific between 1968 and 1985 were processed separately because of large regional biases. The estimated corrections deviate from other published estimates with some large variations in time of both linear and curvature terms in the depth corrections, and less time variation of the temperature correction for the deep XBTs. This analysis of heat content derived from corrected XBTs provides at first order a similar variability to other estimates from corrected XBTs and mechanical bathythermographs (MBTs). It shows a fairly prominent trend in 0–700-m ocean heat content of 0.39 × 1022 J yr−1 between 1970 and 2008. |
---|---|
ISSN: | 0739-0572 1520-0426 |
DOI: | 10.1175/JTECH-D-11-00129.1 |