Liouville Field Theory and Log-Correlated Random Energy Models

An exact mapping is established between the c≥25 Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian free field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-03, Vol.118 (9), p.090601-090601, Article 090601
Hauptverfasser: Cao, Xiangyu, Rosso, Alberto, Santachiara, Raoul, Le Doussal, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An exact mapping is established between the c≥25 Liouville field theory (LFT) and the Gibbs measure statistics of a thermal particle in a 2D Gaussian free field plus a logarithmic confining potential. The probability distribution of the position of the minimum of the energy landscape is obtained exactly by combining the conformal bootstrap and one-step replica symmetry-breaking methods. Operator product expansions in the LFT allow us to unveil novel universal behaviors of the log-correlated random energy class. High-precision numerical tests are given.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.118.090601