Encoding Toroidal Triangulations

Poulalhon and Schaeffer introduced an elegant method to linearly encode a planar triangulation optimally. The method is based on performing a special depth-first search algorithm on a particular orientation of the triangulation: the minimal Schnyder wood. Recent progress toward generalizing Schnyder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2017-04, Vol.57 (3), p.507-544
Hauptverfasser: Despre, Vincent, Goncalves, Daniel, Leveque, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poulalhon and Schaeffer introduced an elegant method to linearly encode a planar triangulation optimally. The method is based on performing a special depth-first search algorithm on a particular orientation of the triangulation: the minimal Schnyder wood. Recent progress toward generalizing Schnyder woods to higher genus enables us to generalize this method to the toroidal case. In the plane, the method leads to a bijection between planar triangulations and some particular trees. For the torus we obtain a similar bijection but with particular unicellular maps (maps with only one face).
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-016-9832-0