Fractional Sobolev metrics on spaces of immersed curves
Motivated by applications in the field of shape analysis, we study reparametrization invariant, fractional order Sobolev-type metrics on the space of smooth regular curves Imm ( S 1 , R d ) and on its Sobolev completions I q ( S 1 , R d ) . We prove local well-posedness of the geodesic equations bot...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2018-02, Vol.57 (1), p.1-24, Article 27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by applications in the field of shape analysis, we study reparametrization invariant, fractional order Sobolev-type metrics on the space of smooth regular curves
Imm
(
S
1
,
R
d
)
and on its Sobolev completions
I
q
(
S
1
,
R
d
)
. We prove local well-posedness of the geodesic equations both on the Banach manifold
I
q
(
S
1
,
R
d
)
and on the Fréchet-manifold
Imm
(
S
1
,
R
d
)
provided the order of the metric is greater or equal to one. In addition we show that the
H
s
-metric induces a strong Riemannian metric on the Banach manifold
I
s
(
S
1
,
R
d
)
of the same order
s
, provided
s
>
3
2
. These investigations can be also interpreted as a generalization of the analysis for right invariant metrics on the diffeomorphism group. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-018-1300-7 |