Fractional Sobolev metrics on spaces of immersed curves

Motivated by applications in the field of shape analysis, we study reparametrization invariant, fractional order Sobolev-type metrics on the space of smooth regular curves Imm ( S 1 , R d ) and on its Sobolev completions I q ( S 1 , R d ) . We prove local well-posedness of the geodesic equations bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2018-02, Vol.57 (1), p.1-24, Article 27
Hauptverfasser: Bauer, Martin, Bruveris, Martins, Kolev, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by applications in the field of shape analysis, we study reparametrization invariant, fractional order Sobolev-type metrics on the space of smooth regular curves Imm ( S 1 , R d ) and on its Sobolev completions I q ( S 1 , R d ) . We prove local well-posedness of the geodesic equations both on the Banach manifold I q ( S 1 , R d ) and on the Fréchet-manifold Imm ( S 1 , R d ) provided the order of the metric is greater or equal to one. In addition we show that the H s -metric induces a strong Riemannian metric on the Banach manifold I s ( S 1 , R d ) of the same order s , provided s > 3 2 . These investigations can be also interpreted as a generalization of the analysis for right invariant metrics on the diffeomorphism group.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-018-1300-7