The John equation for tensor tomography in three-dimensions
John proved that a function $j$ on the manifold of lines in $R^3$ belongs to therange of the x-ray transform if and only if $j$ satisfies some second orderdifferential equation and obeys some smoothness and decay conditions. Wegeneralize the John equation to the case of the x-ray transform on arbitr...
Gespeichert in:
Veröffentlicht in: | Inverse problems 2016-10, Vol.32 (10), p.105013 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | John proved that a function $j$ on the manifold of lines in $R^3$ belongs to therange of the x-ray transform if and only if $j$ satisfies some second orderdifferential equation and obeys some smoothness and decay conditions. Wegeneralize the John equation to the case of the x-ray transform on arbitraryrank symmetric tensor fields: a function j on the manifold of lines in$R^3$belongs to the range of the x-ray transform on rank m symmetric tensor fieldsif and only if $j$ satisfies some differential equation of order 2(m + 1) andobeys some smoothness and decay conditions. |
---|---|
ISSN: | 0266-5611 1361-6420 |
DOI: | 10.1088/0266-5611/32/10/105013 |