Flat Bundles With Complex Analytic Holonomy
Let G be a connected complex Lie group or a connected amenable Lie group. We show that any flat principal G-bundle over any finite CW-complex pulls back to a trivial G-bundle over some finite covering space of the base space if and only if the derived group of the radical of G is simply connected. I...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of mathematics 2016-12, p.0-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a connected complex Lie group or a connected amenable Lie group. We show that any flat principal G-bundle over any finite CW-complex pulls back to a trivial G-bundle over some finite covering space of the base space if and only if the derived group of the radical of G is simply connected. In particular, if G is a connected compact Lie group or a connected complex reductive Lie group, then any flat principal G-bundle over any finite CW-complex pulls back to a trivial G-bundle over some finite covering space of the base space. |
---|---|
ISSN: | 0033-5606 1464-3847 |
DOI: | 10.1093/qmath/haw030 |