Minimax optimal procedures for testing the structure of multidimensional functions

We present a novel method for detecting some structural characteristics of multidimensional functions. We consider the multidimensional Gaussian white noise model with an anisotropic estimand. Using the relation between the Sobol decomposition and the geometry of multidimensional wavelet basis we ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and computational harmonic analysis 2019-03, Vol.46 (2), p.288-311
Hauptverfasser: Aston, John, Autin, Florent, Claeskens, Gerda, Freyermuth, Jean-Marc, Pouet, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a novel method for detecting some structural characteristics of multidimensional functions. We consider the multidimensional Gaussian white noise model with an anisotropic estimand. Using the relation between the Sobol decomposition and the geometry of multidimensional wavelet basis we can build test statistics for any of the Sobol functional components. We assess the asymptotical minimax optimality of these test statistics and show that they are optimal in presence of anisotropy with respect to the newly determined minimax rates of separation. An appropriate combination of these test statistics allows to test some general structural characteristics such as the atomic dimension or the presence of some variables. Numerical experiments show the potential of our method for studying spatio-temporal processes.
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2017.05.003