Hypersurfaces in Weighted Projective Spaces Over Finite Fields with Applications to Coding Theory

We consider the question of determining the maximum number of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Aubry, Yves, Castryck, Wouter, Ghorpade, Sudhir R., Lachaud, Gilles, O’Sullivan, Michael E., Ram, Samrith
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the question of determining the maximum number of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}_{q}$$ \end{document}-rational points that can lie on a hypersurface of a given degree in a weighted projective space over the finite field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}_{q}$$ \end{document}, or in other words, the maximum number of zeros that a weighted homogeneous polynomial of a given degree can have in the corresponding weighted projective space over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}_{q}$$ \end{document}. In the case of classical projective spaces, this question has been answered by J.-P. Serre. In the case of weighted projective spaces, we give some conjectures and partial results. Applications to coding theory are included and an appendix providing a brief compendium of results about weighted projective spaces is also included.
ISSN:2364-5733
2364-5741
DOI:10.1007/978-3-319-63931-4_2