On Probability Characteristics of "Downfalls" in a Standard Brownian Motion
For a Brownian motion $B=(B_t)_{t\le 1}$ with $B_0=0$, {\bf E}$B_t=0$, {\bf E}$B_t^2=t$ problems of probability distributions and their characteristics are considered for the variables $$ \begin{array}{c} {\mathbb D} =\displaystyle\sup_{0\le t\le t'\le 1}(B_t-B_{t'}),\qquad {\mathbb D}_1=B...
Gespeichert in:
Veröffentlicht in: | Theory of probability and its applications 2000-01, Vol.44 (1), p.29-38 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a Brownian motion $B=(B_t)_{t\le 1}$ with $B_0=0$, {\bf E}$B_t=0$, {\bf E}$B_t^2=t$ problems of probability distributions and their characteristics are considered for the variables $$ \begin{array}{c} {\mathbb D} =\displaystyle\sup_{0\le t\le t'\le 1}(B_t-B_{t'}),\qquad {\mathbb D}_1=B_\sigma-\inf_{\sigma\le t'\le 1}B_{t'}, \\ {\mathbb D}_2=\displaystyle\sup_{0\le t\le\sigma'}B_{t}-B_{\sigma'}, \end{array} $$ where $\sigma$ and $\sigma'$ are times (non-Markov) of the absolute maximum and absolute minimum of the Brownian motion on $[0,1]$ (i.e., $B_\sigma=\sup_{0\le t\le 1}B_t$, $B_{\sigma'}=\inf_{0\le t'\le 1}B_{t'}$). |
---|---|
ISSN: | 0040-585X 1095-7219 |
DOI: | 10.1137/S0040585X97977306 |