Static Hedging of Barrier Options with a Smile: An Inverse Problem

Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2002-01, Vol.8, p.127-142
Hauptverfasser: Bardos, Claude, Douady, Raphaël, Fursikov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue
container_start_page 127
container_title ESAIM. Control, optimisation and calculus of variations
container_volume 8
creator Bardos, Claude
Douady, Raphaël
Fursikov, Andrei
description Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\mathbb R}$ be the solution to the equation: \[ L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} . \] Given positive bounds $0
doi_str_mv 10.1051/cocv:2002040
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01477102v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2511339191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5024331e6dc3aa82318491a45d30ee9086792ae640ae83e39deac51627e779f3</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuAgCtbqzR-weBOMzu4m2Wxvbf1ooVCxQY_LmkzarWlSd9Oq_96ElJ5mGB5ehtfzrincUwjpQ1ql-wEDYBDAidejLGI-50KctrtkfkypPPcunFsD0IgHQc8bLWpdm5RMMFuackmqnIy0tQYtmW9rU5WO_Jh6RTRZbEyBAzIsybTco3VIXm31WeDm0jvLdeHw6jD7XvL8lIwn_mz-Mh0PZ37KBav9EFjAOcUoS7nWMeM0DiTVQZhxQJQQR0IyjVEAGmOOXGao05BGTKAQMud977aLXelCba3ZaPunKm3UZDhT7Q1oIAQFtqeNvens1lbfO3S1Wlc7WzbfKQk8lmFjG3TXodRWzlnMj6kUVNunavtUhz4b7nfcuBp_j1bbLxUJLkIVw4dio-Tx7T1cqIT_A210dHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903895014</pqid></control><display><type>article</type><title>Static Hedging of Barrier Options with a Smile: An Inverse Problem</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>NUMDAM</source><creator>Bardos, Claude ; Douady, Raphaël ; Fursikov, Andrei</creator><creatorcontrib>Bardos, Claude ; Douady, Raphaël ; Fursikov, Andrei</creatorcontrib><description>Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}&gt;0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\mathbb R}$ be the solution to the equation: \[ L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} . \] Given positive bounds $0&lt;x_{0}&lt;x_{1},$ we seek a function u with support in $\left[ x_{0},x_{1}\right] $ such that the corresponding solution y satisfies: \[ y(t,0)=\hat{y}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \] We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that $\hat{y}|_{[0,T]\times \{0\}}$ can be C0-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].</description><identifier>ISSN: 1292-8119</identifier><identifier>EISSN: 1262-3377</identifier><identifier>DOI: 10.1051/cocv:2002040</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>62P05 ; 65M32 ; 91B28 ; 93C20 ; barrier option hedging ; Boundary conditions ; Carleman estimates ; Computational Finance ; Hedging ; Interest rates ; Inverse problems ; Pricing of Securities ; Quantitative Finance ; replication</subject><ispartof>ESAIM. Control, optimisation and calculus of variations, 2002-01, Vol.8, p.127-142</ispartof><rights>EDP Sciences, SMAI, 2002</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5024331e6dc3aa82318491a45d30ee9086792ae640ae83e39deac51627e779f3</citedby><cites>FETCH-LOGICAL-c372t-5024331e6dc3aa82318491a45d30ee9086792ae640ae83e39deac51627e779f3</cites><orcidid>0000-0003-4931-1806 ; 0000-0002-1890-3801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01477102$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bardos, Claude</creatorcontrib><creatorcontrib>Douady, Raphaël</creatorcontrib><creatorcontrib>Fursikov, Andrei</creatorcontrib><title>Static Hedging of Barrier Options with a Smile: An Inverse Problem</title><title>ESAIM. Control, optimisation and calculus of variations</title><description>Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}&gt;0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\mathbb R}$ be the solution to the equation: \[ L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} . \] Given positive bounds $0&lt;x_{0}&lt;x_{1},$ we seek a function u with support in $\left[ x_{0},x_{1}\right] $ such that the corresponding solution y satisfies: \[ y(t,0)=\hat{y}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \] We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that $\hat{y}|_{[0,T]\times \{0\}}$ can be C0-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].</description><subject>62P05</subject><subject>65M32</subject><subject>91B28</subject><subject>93C20</subject><subject>barrier option hedging</subject><subject>Boundary conditions</subject><subject>Carleman estimates</subject><subject>Computational Finance</subject><subject>Hedging</subject><subject>Interest rates</subject><subject>Inverse problems</subject><subject>Pricing of Securities</subject><subject>Quantitative Finance</subject><subject>replication</subject><issn>1292-8119</issn><issn>1262-3377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo90E1Lw0AQBuAgCtbqzR-weBOMzu4m2Wxvbf1ooVCxQY_LmkzarWlSd9Oq_96ElJ5mGB5ehtfzrincUwjpQ1ql-wEDYBDAidejLGI-50KctrtkfkypPPcunFsD0IgHQc8bLWpdm5RMMFuackmqnIy0tQYtmW9rU5WO_Jh6RTRZbEyBAzIsybTco3VIXm31WeDm0jvLdeHw6jD7XvL8lIwn_mz-Mh0PZ37KBav9EFjAOcUoS7nWMeM0DiTVQZhxQJQQR0IyjVEAGmOOXGao05BGTKAQMud977aLXelCba3ZaPunKm3UZDhT7Q1oIAQFtqeNvens1lbfO3S1Wlc7WzbfKQk8lmFjG3TXodRWzlnMj6kUVNunavtUhz4b7nfcuBp_j1bbLxUJLkIVw4dio-Tx7T1cqIT_A210dHM</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Bardos, Claude</creator><creator>Douady, Raphaël</creator><creator>Fursikov, Andrei</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4931-1806</orcidid><orcidid>https://orcid.org/0000-0002-1890-3801</orcidid></search><sort><creationdate>20020101</creationdate><title>Static Hedging of Barrier Options with a Smile: An Inverse Problem</title><author>Bardos, Claude ; Douady, Raphaël ; Fursikov, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5024331e6dc3aa82318491a45d30ee9086792ae640ae83e39deac51627e779f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>62P05</topic><topic>65M32</topic><topic>91B28</topic><topic>93C20</topic><topic>barrier option hedging</topic><topic>Boundary conditions</topic><topic>Carleman estimates</topic><topic>Computational Finance</topic><topic>Hedging</topic><topic>Interest rates</topic><topic>Inverse problems</topic><topic>Pricing of Securities</topic><topic>Quantitative Finance</topic><topic>replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bardos, Claude</creatorcontrib><creatorcontrib>Douady, Raphaël</creatorcontrib><creatorcontrib>Fursikov, Andrei</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bardos, Claude</au><au>Douady, Raphaël</au><au>Fursikov, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static Hedging of Barrier Options with a Smile: An Inverse Problem</atitle><jtitle>ESAIM. Control, optimisation and calculus of variations</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>8</volume><spage>127</spage><epage>142</epage><pages>127-142</pages><issn>1292-8119</issn><eissn>1262-3377</eissn><abstract>Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}&gt;0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\mathbb R}$ be the solution to the equation: \[ L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} . \] Given positive bounds $0&lt;x_{0}&lt;x_{1},$ we seek a function u with support in $\left[ x_{0},x_{1}\right] $ such that the corresponding solution y satisfies: \[ y(t,0)=\hat{y}(t,0)\quad \quad \forall t\in \left[ 0,T\right] . \] We prove in this article that, under some regularity conditions on the coefficients of L, continuous solutions are unique and dense in the sense that $\hat{y}|_{[0,T]\times \{0\}}$ can be C0-approximated, but an exact solution does not exist in general. This result solves the problem of almost replicating a barrier option in the generalised Black–Scholes framework with a combination of European options, as stated by Carr et al. in [6].</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/cocv:2002040</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4931-1806</orcidid><orcidid>https://orcid.org/0000-0002-1890-3801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1292-8119
ispartof ESAIM. Control, optimisation and calculus of variations, 2002-01, Vol.8, p.127-142
issn 1292-8119
1262-3377
language eng
recordid cdi_hal_primary_oai_HAL_hal_01477102v1
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; NUMDAM
subjects 62P05
65M32
91B28
93C20
barrier option hedging
Boundary conditions
Carleman estimates
Computational Finance
Hedging
Interest rates
Inverse problems
Pricing of Securities
Quantitative Finance
replication
title Static Hedging of Barrier Options with a Smile: An Inverse Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20Hedging%20of%20Barrier%20Options%20with%20a%20Smile:%20An%20Inverse%20Problem&rft.jtitle=ESAIM.%20Control,%20optimisation%20and%20calculus%20of%20variations&rft.au=Bardos,%20Claude&rft.date=2002-01-01&rft.volume=8&rft.spage=127&rft.epage=142&rft.pages=127-142&rft.issn=1292-8119&rft.eissn=1262-3377&rft_id=info:doi/10.1051/cocv:2002040&rft_dat=%3Cproquest_hal_p%3E2511339191%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903895014&rft_id=info:pmid/&rfr_iscdi=true