Static Hedging of Barrier Options with a Smile: An Inverse Problem

Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2002-01, Vol.8, p.127-142
Hauptverfasser: Bardos, Claude, Douady, Raphaël, Fursikov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\mathbb R}$ be the solution to the equation: \[ L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} . \] Given positive bounds $0
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv:2002040