Static Hedging of Barrier Options with a Smile: An Inverse Problem
Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\ma...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2002-01, Vol.8, p.127-142 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let L be a parabolic second order differential operator on the domain $ \bar{\Pi}=\left[ 0,T\right] \times {\mathbb R}.$ Given a function $\hat{u}: {\mathbb R\rightarrow R}$ and $\hat{x}>0$ such that the support of û is contained in $(-\infty ,-\hat{x}]$, we let $\hat{y}:\bar{\Pi}\rightarrow {\mathbb R}$ be the solution to the equation: \[ L\hat{y}=0,\text{\quad }\hat{y}|_{\{0\}\times {\mathbb R}}=\hat{u} . \] Given positive bounds $0 |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv:2002040 |