FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry
The authors present a computational framework for false-discovery-rate-controlled metabolite annotation from high-resolution imaging mass spectrometry data. High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cel...
Gespeichert in:
Veröffentlicht in: | Nature methods 2017-01, Vol.14 (1), p.57-60 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors present a computational framework for false-discovery-rate-controlled metabolite annotation from high-resolution imaging mass spectrometry data.
High-mass-resolution imaging mass spectrometry promises to localize hundreds of metabolites in tissues, cell cultures, and agar plates with cellular resolution, but it is hampered by the lack of bioinformatics tools for automated metabolite identification. We report pySM, a framework for false discovery rate (FDR)-controlled metabolite annotation at the level of the molecular sum formula, for high-mass-resolution imaging mass spectrometry (
https://github.com/alexandrovteam/pySM
). We introduce a metabolite-signal match score and a target–decoy FDR estimate for spatial metabolomics. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/nmeth.4072 |