Convergence rates for nonequilibrium Langevin dynamics

We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresponding respectively to frictions going to zero or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathématiques du Québec 2019-04, Vol.43 (1), p.73-98
Hauptverfasser: Iacobucci, A., Olla, S., Stoltz, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresponding respectively to frictions going to zero or infinity) are carefully investigated. In particular, the maximal magnitude of admissible perturbations are quantified as a function of the friction. Numerical results based on a Galerkin discretization of the generator of the dynamics confirm the theoretical lower bounds on the spectral gap.
ISSN:2195-4755
2195-4763
DOI:10.1007/s40316-017-0091-0