A Novel Approach for Improved Vehicular Positioning Using Cooperative Map Matching and Dynamic Base Station DGPS Concept
In this paper, a novel approach for improving vehicular positioning is presented. This method is based on the cooperation of the vehicles by communicating their measured information about their position. This method consists of two steps. In the first step, we introduce our cooperative map matching...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2016-01, Vol.17 (1), p.230-239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a novel approach for improving vehicular positioning is presented. This method is based on the cooperation of the vehicles by communicating their measured information about their position. This method consists of two steps. In the first step, we introduce our cooperative map matching method. This map matching method uses the V2V communication in a vehicular ad hoc network (VANET) to exchange global positioning system (GPS) information between vehicles. Having a precise road map, vehicles can apply the road constraints of other vehicles in their own map matching process and acquire a significant improvement in their positioning. After that, we have proposed the concept of a dynamic base station DGPS (DDGPS), which is used by vehicles in the second step to generate and broadcast the GPS pseudorange corrections that can be used by newly arrived vehicles to improve their positioning. The DDGPS is a decentralized cooperative method that aims to improve the GPS positioning by estimating and compensating the common error in GPS pseudorange measurements. It can be seen as an extension of DGPS where the base stations are not necessarily static with an exact known position. In the DDGPS method, the pseudorange corrections are estimated based on the receiver's belief on its positioning and its uncertainty and then broadcasted to other GPS receivers. The performance of the proposed algorithm has been verified with simulations in several realistic scenarios. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2015.2465141 |